New Energy research group news


Energy solutions for Naantali housing fair – Energiaratkaisut Naantalin asuntomessuilla



NERC has developed three energy solutions for the housing fair in Naanatali, Finland, this summer. The solutions include a public e-bike rapid charger, solar power canopy at the beach and energy community, where it is possible for the whole housing company to share the renewable energy they produce. More about the solutions in Finnish below.

Naantalin asuntomessujen energiaratkaisut

Turun AMK:n Uuden energian tutkimusryhmä on kehittänyt Naantalin asuntomessuille kolme uutta energiaratkaisua. Lue lisää ratkaisuista täältä. Tutustu ratkaisuihin asuntomessuilla 15.7.-14.8.2022, lisätietoja

Kiinnostuitko jostain ratkaisusta tai haluat lähteä kehittämään sitä? Ota meihin yhteyttä:


Sähköpyörän latauspiste

Sähköpyörän latauspisteessä on mahdollista ladata kaikkia yleisimpiä sähköpyörämalleja ilman, että oma laturi on mukana! Eazy eCycle-latauspiste toimii mobiiliapplikaatiolla, joka on ladattavissa. 30 min latauksella saat 20 km lisää toimintamatkaa. Yhdellä latausasemalla voi ladata kahta pyörää.

Rannan aurinkovoimala

Rannan aurinkovoimala on rakennettu kaksipuoleisista aurinkopaneeleista, jotka tuottavat uusiutuvaa energiaa ja tarjoavat suojaa sateelta ja auringolta. Kaksipuoleiset aurinkopaneelit voivat tuottaa jopa 20% enemmän energiaa yksipuoleisiin aurinkopaneeleihin verrattuna. Rakenteensa ansiosta ne sopivat hyvin käytettäväksi katoksissa, sillä auringonsäteet siivilöytyvät kauniisti kennojen välistä.


Asuntomessualueelle on perustettu energiayhteisö, jossa yhteisöön kuuluvien kiinteistöjen kesken jaetaan niissä tuotettua uusiutuvaa energiaa. Energiayhteisöllä tarkoitetaan erilaisia yhteenliittymiä, jotka voivat yhdessä tuottaa ja hankkia sähköä. Asuntomessujen kohteessa talojen katoilla on aurinkopaneelit, joiden tuottamaa energiaa käytetään kiinteistöissä. Aurinkopaneelien tuotanto on korkeimmillaan päivällä, mutta energian kulutus alhaista, joten energiaa varastoidaan akkuun ja käytetään myöhemmin.



RESPONSE Ecosystem Meeting Gathered Partners in Turku



Partners from all over Europe and Finland travelled to Turku in June 2022 to attend the RESPONSE Turku Ecosystem Meeting. The NERC team was pleased to meet guests from Dijon, Brussels, Zaragoza, Botoșani, Severdonetsk and Gabrovo. On the first day of the meeting, the partners were welcomed the Turku UAS building EduCity where they had also the chance to visit the New energy laboratory. The meeting itself co-hosted by the partners City of Turku, Turku UAS, VTT and Turku Energia.

The first day of the three-day event was dedicated to the project’s local citizen participation activities and knowledge transfer between the project partners. The RESPONSE project boasts state-of-the-art technical solutions to build energy positive district, PED, as well as encouraging citizens to reduce their energy usage and impact on the environment. The knowledge transfer also included a panel discussion in which the topic of joint transformation and collaboration between the city and its citizens was discussed.

On the second day, the guests learned about the various energy solutions implemented in the PED area. New energy research group has been involved in developing several of these solutions, such as implementing the bi-facial solar panels that are going to be installed on the roof of the brand new Tyyssija building. The electricity produced by the solar panels is used in Tyyssija and in other buildings that will be connected to a microgrid. The leftover energy will be stored in batteries, allowing a more flexible use of surplus energy.

To familiarize themselves with the PED area and its Positive Energy Buildings (PEB), the partners enjoyed a guided PED tour. During the guided tour, the partners got to know the history of the PED area which dates back to the 60’s and visit the machine room of the Tyyssija building.

On the last day the e-mobility, city information and air quality solutions were presented. An important part of the project is to encourage citizens to choose mobility means that consume less fossil fuels, such as bicycling and electric cars. NERC sustainable mobility experts are strongly involved in the work implementing electric mobility solutions in the PED area.

The meeting made it possible for the entire Turku Ecosystem, the lead partner, as well as for the Dijon and Fellow city representatives to get a concrete picture of the progress of the RESPONSE activities in the Turku PED.

Picture: Christina Piirainen (City of Turku)

tyyssija positive energy district


ECOMM Turku 2022 – European Conference on Mobility Management



The ECOMM conference was organized in Turku 31.5.-2.6.2022 at the Turku City Theatre, with the main theme being “BE INSPIRED by… sustainable mobility!” A great variety of presentations were given at the event, from mobility management, data use, mobility hubs, transforming mobility patterns, sustainable transport to recreating urban spaces, and many more topics. Presentations described what kind of measures have been taken, what kind of challenges have been met, as well as barriers, drivers and different solutions available from around the world. Many cities and areas face similar challenges but also at the same time have regionally or locally specific issues to tackle. Many wise words were exchanged and good conversations held regarding sustainable mobility. TUAS mobility experts Annika Kunnasvirta and Katariina Kiviluoto both presented at the conference – Annika in a joint mobility governance session by projects SCALE-UP and MOVE21, and Katariina in a session focused on modal share growth of sustainable transport after the pandemic.

The official conference dinner was held at the Turku University of Applied Sciences premises, EduCity, with a superb buffet consisting of traditional foods from different parts of Finland, a culinary trip through the Finnish nation from the south-west to the north. Before the dinner the participants had an excellent opportunity to slide down to visit three laboratories. Engine and Powertrain, Vehicle and New Energy laboratories were presented by their personnel and the top-notch laboratories noticeably impressed the conference participants. Additionally, the architectural choices and artwork at EduCity were greatly appreciated, especially by the international participants.

The conference was an outstanding platform to share and receive knowledge between the different professionals of varying backgrounds. After COVID-19 and ECOMM conference being organized online for two years, was this a fresh start for ECOMM being again a live conference.



Partners and stakeholders shared their experiences at e3Power final seminar



The three-year research project e3Power, carried out by Turku University of Applied Sciences (Turku UAS) and LUT University, has come to an end. The project proposed a system engineering approach to designing and optimizing hybrid/electric powertrains for non-road heavy-duty vehicles.

The final seminar regarding Turku UAS role in the project was held on the new premises of the university of applied sciences, EduCity, where the project consortium met to discuss the outcomes of the project. During the project, NERC has tested battery modules, designed battery packages, validated simulation models and evaluated high power charging (HPC).

As a result of the project, NERC developed a battery cell simulation model and hardware in the loop tool (HIL) which can be utilized in future projects and research (the picture below). The project also produced open data about battery cells which will be available on, and can be found using the Etsin tool once it is uploaded.

The final seminar was a great chance for the project consortium to meet, change experiences and visit the New Energy laboratory, where many of the project results were produced.



On-the-job training in NERC – Kasperi’s experience


In May, NERC had the chance to work as an example to future talent, as we had Kasperi in on-the-job training. The eighth-grader from Lieto learned about the Turku University of Applied sciences laboratories online and found the New Energy lab to be to most fascinating. Therefore he decided to apply for his on-the-job training position from us. 

Kasperi was helping with various tasks. “The most interesting task was when I got to test the performance of solar panels”. He also learned new skills, such as soldering and gained English vocabulary, as the NERC working environment is bilingual. Kasperi enjoyed his on-the-job training and recommends NERC to everyone interested in new energy solutions.

DSC01216 (2)


Publications on Low carbon mobility in mobility hubs released – Read the Handbook for evaluating pilots and a guide for paid bicycle parking



New energy research Center was involved in the Low-carbon transport in mobility hubs project that finished in the end of January. The project encouraged businesses and cities work together to boost low carbon transport trough different pilots in mobility hubs in six cities (Espoo, Tampere, Oulu and Turku). During the project, a handbook for evaluating pilots conducted in projects, as well as a guide for paid bicycle parking, were written and now they have been published.

The handbook presents good practices for evaluating and implementing the pilots. It contains case examples from pilots implemented in the project. The handbook is targeted for anyone who is interested in fast pilots, such as cities, companies, projects or specialists.

The guide for bicycle parking concentrates especially on the additional services provided in paid bicycle parking. The guide includes requirements and experiences about different additional services that can be provided besides bicycle parking. The target audience for the guide is similar to the handbook. 

In case you are operating in the area of city of Turku or want to learn more about the conditions for bicycling in the area, a report regarding the conditions was also delivered during the project. 

Read the publications from the project page.



NERC's new Project Engineer is a recent TUAS graduate



Patrick Yliluoto studied energy and environment technology at Turku University of Applied Sciences (UAS), and after graduation, he has started to work at Turku UAS as a project engineer. "A couple of months ago I was a student at the same place where I now work, and it is very exciting to be here", he says. "Working as a project engineer is interesting and gives the opportunity to develop and challenge yourself. This is the main reason why I decided to study a technical degree."

Patrick works in two different projects, which are UUTTERA and KAEV. "In the UUTTERA project, my main work contribution is partly focused on energy communities and mainly on creating a network of experts from thermal energy companies. In the KAEV project, my work contribution is focused on the cross-border electricity production of a property through a photovoltaic system", he explains.

"The first impression of the colleagues of the Turku UAS and the NERC was hospitable and professional. I have been a couple of times in Turku UAS New energy research lab and it is impressive. I look forward to meeting colleagues and interesting discussions with them" Patrick describes his first weeks working for NERC.

Patrick spends his free time doing music projects, developing himself as an engineer and going to the gym or run. 

DSC01107 (2)


Labrox tested their product in NERC’s Climatic chamber



NERC’s climatic chamber was put in use when Labrox, a company specializing in multimode plate reader platforms, detection systems, modules and components, tested their product in it.

The climatic chamber, also known as environmental chamber, arrived in the laboratory at the end of year 2020. The chamber provides a test environment, artificially replicating varying extreme conditions.


The chambre has been used to test photovoltaic solar panels but Labrox was the first customer to conduct tests in the chamber. The chambre is used to test products in high moisture or extreme high/cold temperature conditions. Any battery and power electronics can be tested in the chamber. Testing will ensure long term field performance of components and equipment.




NERC boosting sustainable mobility – lessons learned 



Energy used for transport accounts for approximately one fifth of Finland’s carbon dioxide emissions. Thus, on its journey to reduce Finland’s carbon emissions, NERC is tackling also the emissions produced in transport by promoting sustainable mobility in several projects. Annika Kunnasvirta from NERC, together with Turku UAS lecturer Telle Tuominen, has co-edited the publication ”Steps towards climate friendly transport and mobility in Turku region” (Askeleita kohti ilmastoystävällistä liikennettä ja liikkumista Turun seudulla). The publication includes lessons learned from several projects TUAS has been involved with, including five EU-funded projects NERC has managed or participated in: Green SAM, eBussed, HEAT, BSR electric and Low-carbon transport in mobility hubs.

The publication starts from the fact that moving people and goods is a necessity in our society. Therefore we need to aim at sustainable mobility that is accessible to everyone. The publication provides tools for urban planners and presents solutions for promoting low-carbon transport.  It also includes draft measures for boosting behavior change when choosing the mode of transport. To conclude, it also investigates the future of sustainable transport in Turku. The publication is available here in Finnish.

Picture: Ayan Aden



NERC's new Electrical Engineering talent, Nouman Ashraf 


Nouman Ashraf is a new addition to NERC electrical engineering team. Nouman, who has made his bachelor, master and Ph.D. in Electrical Engineering, has worked in Ireland for VistaMilk (SFI) Research center for collaboration between Agri-Food and ICT and for Waterford Institute of Technology. He has also participated VISORSURF (FETOPEN) project at the University of Cyprus, where the main objective was to develop software components for smart, interconnected planar objects with programmable electromagnetic behavior.

Nouman is an experienced researcher and he has authored and co-authored more than 25 publications in prestigious peer-reviewed journals and conferences. His research interests include the application of control theory for algorithm designing for emerging intelligent networks with applications in energy management, battery management, electric vehicles, smart grid, smart communities, Internet of Things and 5G. His interest goes even beyond wireless communication to intelligent reflecting surface assisted communication and networks resilience.

nouman copy


Meet Little Tero, the new Lecturer of Thermal Heat Energy Technology


Tero Tuomarmäki, also known as Little Tero, joined Turku University of Applied Sciences (UAS) as a Lecturer of Thermal Heat Energy Technology. “The substance area is very wide, and it is connected even broader spectrum of other substances. Every process you can imagine, thermal energy has some form in it, wanted or not”, Tero explains.

“I studied originally Power plant and ship machine technology in Turku UAS Sepänkatu. Despite of that I found myself after graduation from a paper machinery industry from an engineering task. After a couple of years, I decided to continue my studies with Lappeenranta University of Technology, where I studied Energy Technology. After the graduation from there, I found myself from consulting chemical industry, which is substantial energy user when ensuring processes functioning as planned. Industrial processes are complex combination of different equipment and there will always be something new to learn for each of us”, Tero tells about his past.

Tero’s first priority in working in Turku UAS is of course teaching the students, but you can find him also from different projects such as RESPONSE, and projects related to hydrogen or thermal storages. “With projects we try to collaborate and guide students to closer real life engineering work, which is the most valuable asset that we can offer from the school. Combination of those very different tasks can keep me extremely busy at the times and I apologize that already on beforehand, but if you have some cup of dark roasted coffee (and offering it) without spoiling the taste with any white thing, I am always listening”, Tero notes and sends everyone energized greetings for the Autumn.




Promoting low carbon transportation: bicycle parking pilots in Turku


Energy used for transport accounts for approximately one fifth of Finland’s carbon dioxide (CO2) emissions. Reducing the transports’ CO2 emissions is a challenge that also NERC wants to address, and therefore participates an ERDF project promoting low carbon transport in mobility hubs.

The project, Low-carbon transport in mobility hubs, encourages businesses and cities work together to boost low carbon transport trough different pilots in mobility hubs in six cities (Espoo, Tampere, Oulu and Turku). In the project, Turku University of Applied Sciences implements pilots that feature bicycle parking in different environments. An ongoing experiment with Punta Oy features a container turned into safe and multifunctional bicycle parking. The users can rent parking space for a day or a month to park their bikes safely. The parking works with a web browser and a mobile phone can be used as a key. Users can also rent storage lockers for their items, such as helmet, charge their e-bikes and small bike maintenance kits are also available. Registration to the service can be done here.

The goal of the project is to enhance business opportunities regarding novel mobility services, developing travel chains and parking systems. The pilots provide valuable information on users’ perspectives on the services and promote the Mobility as a Service (MaaS) concept.

More experiments are on their way, so stay tuned and follow NERC’s web pages and Twitter for updates!





NERC team has grown - meet our new member Hongyan Liu!


New Energy Research Center has expanded during 2021 and it is time to introduce all our new team members. We will start with Hongyan Liu, who joined New Energy team in February 2021. Currently her research work in project RESPONSE and SLEPS is centered around business model innovation. At the same time, she works on applying EU Horizon funding calls.

Hongyan received her bachelor’s degree in Industrial Safety and Environmental Engineering in Beijing, China. She received her Master’s degree in Information Systems from the Department of Economics and Social Sciences, and her PhD in Economics and Business Administration from the Department of Information Technologies, both at Åbo Akademi University in Turku.

Before joining Turku University of Applied Sciences (UAS), Hongyan has worked in various capacity in business development, project management, business administration and business consulting in China and Finland, in addition to academic research.. At Turku UAS, she wants to devote her knowledge and knowhow to clean energy transition through RDI work, project-based education, and internationalization; in a way contribute to Turku regional development. One thing that interests her about Turku UAS is the project based Innopeda educational approach.

Since her start at Turku UAS, Hongyan has been introduced, besides the projects and new colleagues, also to the brand new EduCity facilities. “The well-equipped research labs are very impressive. My expectation in general is to work with open-minded, forward-looking, intelligent, and like-minded people. In addition, I appreciate a work environment where is to enable creativity, knowledge sharing, and collaboration”.

In her free time Hongyan enjoys various activities, from bird watching to fine & performing arts and from travel to wine tasting. She has been living in Finland for 17 years and enjoys her life here: “I like Turku, especially, for easy-access nature and mushroom picking. And my husband is a Finn”.






Paving the way for smart solutions to sustainable mobility - CIVITAS ECCENTRIC finalized after four productive years


Smart mobility has a key role in the process of Turku becoming carbon neutral by 2029. As the first CIVITAS project in Finland, CIVITAS ECCENTRIC brought with it some important learnings and long-lasting developments in sustainable urban mobility in Turku.

Funded by the EU’s Horizon 2020 programme in 2016-2020, the project advanced smart mobility via nine different measures. The themes of these measures ranged from developing safer walking and cycling to electric public transport and sharing of vehicles, as well as mobility as a service. The use of biogas as a transport fuel in heavy traffic was also promoted.

The actions carried out in the project strongly contributed to advancing the goal of carbon neutrality in the city. Each ECCENTRIC city had its own central area for these actions, a Living Laboratory, where innovative mobility solutions could be tested in real-life environments. In Turku, the project’s main showcase area was the Kupittaa district.

TUAS was responsible for the impact and process evaluation of the Turku measures - in other words grasping and analyzing the main lessons learned from the implementation process and the results of the Turku measures. For TUAS and NERC, the project thus provided experience and increased competences on different aspects of project evaluation. The project particularly accentuated the need to evaluate the process, impact and effectiveness of project actions systematically and holistically, to better integrate the learnings in a wider development framework.

The partner organizations in addition to TUAS included the City of Turku (project lead) and the Regional Council of Southwest Finland, Western Systems Ltd, Turku Urban Traffic Ltd and Gasum Oy. In addition to Turku, four other European cities were involved in CIVITAS ECCENTRIC: Munich, Stockholm, Madrid and Ruse.

For more information, see the final report of CIVITAS ECCENTRIC in Turku (in Finnish).






TIGON project website and presentation video launched


The Project TIGON has launched its presentation video on the new project website: Discover how the project will enhance microgrids for Europe's energy transition.


TIGON aims to make a robust case for the widespread rollout of hybrid microgrids as a way to make electricity grids greener, more efficient and more resilient. Over four years, the project team will out together pioneering AC/DC microgrids to integrate solar power, energy storage systems, EV charging points and other direct-current loads.


The new project website features TIGON's rationale and its 4 showcases along with their hybrid microgrid solutions. Throughout the project, the website will offer news, articles and insights on our work. You can also subscribe to the project newsletter. The presentation video, explaining the project in under 2 minutes is also available at the website, as well as the TIGON Youtube channel.


The TIGON project team consists of 15 partners from 8 European countries, led by Spain's Fundación CIRCE. The website was designed and developed by Fondazione iCons, in charge of the project communication. The role of TUAS and especially the New Energy research group in the project is to replicate the developed and demonstrated solutions in Finnish conditions.


TIGON is funded by the EU's Horizon 2020 Research and Innovation programme and has a budget of roughly 7 million euros. It forms part of the EU's broader policy of building a low-carbon, climate-resilient future.





We are hiring!


The New Energy research group is looking for new experts to complement the team. The two new lecturer positions consist of diverse tasks related to education and research activities, and are both full-time positions. We are recruiting:

  • Lecturer of smart energy systems, who will mainly be working with battery energy storages and automation systems, as well as their modelling and simulation.
  • Lecturer of thermal energy systems, with a focus e.g. on heat pumps, cooling systems, thermal energy storages and energy networks.

In addition to teaching, both positions include research activities and development of new research projects as part of the New Energy research group. The full announcements of both positions as well as the directions for how to apply are found in the Kuntarekry recruitment portal. For more information on the Lecturer of smart energy systems, see here and for more information on the Lecturer for thermal energy systems see here.



HEAT project - promoting urban planning that advances health and everyday physical activity


After three years of various activities, the Interreg Central Baltic funded HEAT project (Participatory Urban Planning for Healthier Urban Communities is nearing its end. The project has aimed to address the problem of fragmented urban planning and cycling infrastructure via a finance-based approach as well as by developing participatory concepts where city residents and multiple sectors have opportunities to give their views and ideas for the officials in urban planning. The increased knowledge from citizens and experts, such as health authorities and users of the bike ways, will hopefully help city officials be better equipped to plan healthier, more active and inclusive urban areas in the Central Baltic region.


The economy of promoting cycling has been vital part of the project. Economic effects of increased cycling can be calculated with the HEAT Tool (Health Economic Assessment Tool), developed by the WHO. The tool takes into consideration the effects of physical activity, air pollution, accidents and, in the latest version, also those of carbon dioxide, on mortality. The denumerable financial benefits of cycling are derived from the annual effects on reduced mortality. This financial analysis can be used in cities to aid urban infrastructure planning and to provide arguments for future investments and strategies.


Turku University of Applied Sciences organized practical HEAT Tool training days for and support for making calculations with the tool for the project partner cities. The financial benefits of cycling were studied and calculated in all project target cities and areas, the Turku core region in Finland, City of Tartu in Estonia, City of Jūrmala, in Latvia and the Stockholm region in Sweden. The cities accumulated experience of using the tool, analyzing the effects and utilizing the results.


During the project, strong emphasis was also placed on how to get inhabitants to participate in city and transport planning particularly concerning walking and cycling, resulting in more inclusive and participatory processes with a focus on sustainable and healthy communities and a particular emphasis on cycling conditions. These experiences were summarized in a handbook for participatory urban planning. The handbook and other materials produced by the project can be accessed via:



Three years of BSR electric


For the past three years, our experts in sustainable mobility have been working on a project focusing on e-mobility in urban environments. BSR electric – Fostering e-mobility solutions in urban areas in the Baltic Sea Region was international project which commenced in October 2017 and was finished this September.

Funded by the INTERREG Baltic Sea Region Programme 2014- 2020, the project aimed at enhancing the utilization of e-mobility in urban transport systems. The project consortium consisted of 15 partner organizations from eight countries and the seven different use cases of the project demonstrated the potential applications of various types of e-mobility, such as e-bikes, e-buses and e-scooters.

In our use case in TUAS, carried out in cooperation with a city-owned company Arkea Ltd, the suitability of LEVs (a regular e-bike and an e-cargo bike) for organization logistics was explored and their potential in replacing passenger car use on work-related trips was assessed. Based on the use case experiences and a comprehensive literature review, a report examining the feasibility of replacing (city)-organization fleets with EVs or LEVs was devised. In addition, a fleet track and route optimization tool was developed to assist city authorities or other relevant organizations in planning for the deployment of e-vehicles. These deliverables can be found here.

In general, the LEVs were received well and seen as having potential in replacing car use in certain contexts. At the same time, valuable lessons were learned. Firstly, usability of different LEVs is greatly dependent on the specific use context. Thus, careful mapping of user needs and market options is a necessity. Weather conditions in wintertime can be prohibiting factor for many potential users, which should be considered when timing the introduction of LEVs. The introduction of LEVs is best to be coupled with incentives or an information campaign to guarantee a successful introduction. Finally, practical issues such as storing requirements and safety related to LEVs are significant factors to their usability and can hinder initial eagerness towards the vehicles.

Key learnings from all seven use cases of the project have fed into checklists, an online learning module targeted at decision-makers as well as other urban transport stakeholders, and the roadmap document gathering the experiences from the project. All this material is found at the official project website.



A New wind power training system to complement our facilities for students


One of the most recent investments to our laboratory infrastructure, a wind power training system, has opened new opportunities for teaching and learning about wind energy production for the students of environmental-, energy- and chemical engineering students in TUAS.

Both teaching and learning about the design and operation of a modern wind power plant is challenging, as the plants themselves are basically inaccessible, which limits the opportunities for hands-on learning.

One of the latest additions to our laboratory facilities, a Lucas-Nülle wind energy training system has been bridging this gap since October. The system by a German manufacturer allows the emulation of the effect of wind force and the mechanical design of wind power stations in realistic detail using the servo machine testing stand and the WindSim software. With the system a double-feed asynchronous wind generator (DFIG) can be set up and commissioned. The generator can be operated with varying wind force levels and the output voltage and frequency can be regulated. 

The "mini power plant" allows our students to gain more hands-on experience of operating a wind power plant, which is a welcomed addition to learning by theory and simulations. Currently the system is in use on the Distributed Energy Systems -course, provided for the 3rd year students. The training system, as several other of our latest investments, has been made part as an investment programme supported by the European Regional Development Fund (ERDF). 



RESPONSE - Integrated solutions for positive energy districts and sustainable cities 


The recently launched RESPONSE project aims at creating a vision for the transition of the smart cities towards climate neutrality by 2050. The overall focus of the project is to create resilient and safe cities whilst improving the quality of life and lowering the impacts of climate change. The five-year project has received EU funding of 6,6 million euros.

At the core of the project are positive energy districts (PEDs). Positive energy districts and neighbourhoods refer to areas producing more net energy than what they are consuming. In the RESPONSE project, PEDs are being developed in the lighthouse cities of Turku and Dijon (France). The other cities, involved in the project as fellow cities are Brussels (Belgium), Zaragoza (Spain), Botosani (Romania), Ptolemaida (Greece), Gabrovo (Bulgaria) and Severodonetsk (Ukraine).

The project introduces ten integrated solutions, which in Turku are implemented in the Student Village (Ylioppilaskylä) area. The solutions include innovative technologies and tools, aiming at changing the existing and new building stock. As for the energy systems, the goal is to reduce the CO2 emissions of electricity-, heating- and cooling systems and improve the resilience, synergies and the storage capacity of the grids.

As part of the Turku project ecosytem TUAS and the New Energy research group bring expertise on renewable energy production, energy storages, DC microgrids and sustainable mobility to the project. The creation of PEDs is not only a matter of technology but also requires efforts from the citizens. Together with the Studen Village inhabitants TUAS is developing ways to engage the citizens.

The City of Turku leads the project ecosystem in Turku and other local partners in addition to TUAS include e.g. TYS, Turku Energia and Turku City Data. The whole project consortium is led by EIFER (European Institute for Energy Research) and the consortium consists of 53 partners. The project has officially commenced 1.10.2020 and it has received funding from the Horizon2020 research and innovation programme.

See the news of the project commencement also at the TUAS official website (in Finnih).



TIGON project launched!


We’re happy to announce the start of a new project in which we are involved in as a partner. The project TIGON is set to demonstrate how direct current (DC) microgrids can help make the EU's electricity grids greener, more efficient, and more resilient as the world turns to renewable energy.

Most grid infrastructure is based on alternating current (AC) However, most popular renewable energy sources generate DC output, either directly or through a power converter. As they are intermittent, their power must be stored in batteries – again in DC. Furthermore, most modern electrical equipment such as laptops, mobile phones and LED lighting operate on DC. The question then arises: how do we draw on the legacy of the AC grid infrastructure when generation and consumption are increasingly DC?

TIGON aims to make a business case for advanced hybrid microgrids. The project will develop and demonstrate flexible solutions in two microgrids in France and Spain. The demonstrations will integrate solar power, energy storage systems, electric vehicle charging points and other DC loads using highly efficient grid technologies such as solid-state transformers, DC/DC converters and energy management systems.

The replication potential of the demonstrations will be tested in two use cases, the other one being the DC microgrid at Naantali Luonnonmaa residential district near Turku. Our role in the project is to lead the the analysis and provide results and conclusions on TIGON replication potential in Finnish infrastructure and legislation, and on the benefits of extending the DC network and improving its interaction with the main grid. Some of the solutions developed in TIGON are intended to be used in the DC microgrid currently being developed in one of our other project, SLEPS.

The international project consortium of TIGON is led by CIRCE (Fundación CIRCE Centro de Investigación de Recursos y Consumos Energéticos) from Spain. The four-year project is funded by European Union’s Horizon 2020 research and innovation programme. 




We made a move!


With great joy, we are announcing the good news. We have moved!

A brand new EduCity campus building in Kupittaa has recently opened its doors. All our laboratory equipment has been moved to the modern and spacious premises of the new campus. The new address of our laboratory is Joukahaisenkatu 7, Turku or simply EduCity, and our facilities are found at the bottom floor. Our team has also retrieved a new office space in the adjacent ICT-City building, at room C 5093, found in the 5th floor, wing C.

The new EduCity building is equipped with many comfortable rooms and spaces. Students are treated with modern learning facilities and working spaces and there are also rooms for meetings. Cozy and stylish armchairs, big windows and open terraces provide opportunities for relaxation, and an indoor spiral slide some excitement! Sustainable development, including energy and material efficiency have guided the design. There are solar panels on the roof, good thermal insulation, and the sedum roofing of the terraces absorb and store carbon.

The new facilities are convenient to reach for both locals and visitors. Buildings are within a 200 m walking distance from the Kupittaa Railway Station and local bus lines 32 and 42 have a stop very near. If you are arriving by car, there are some paid parking spaces available. We couldn’t be more excited about the brand-new facilities and look forward to making them our home!




Samuli Ranta
Research Leader
+358 40 355 0833