New Energy research group news

 

HEAT project - promoting urban planning that advances health and everyday physical activity

14.1.2021

After three years of various activities, the Interreg Central Baltic funded HEAT project (Participatory Urban Planning for Healthier Urban Communities is nearing its end. The project has aimed to address the problem of fragmented urban planning and cycling infrastructure via a finance-based approach as well as by developing participatory concepts where city residents and multiple sectors have opportunities to give their views and ideas for the officials in urban planning. The increased knowledge from citizens and experts, such as health authorities and users of the bike ways, will hopefully help city officials be better equipped to plan healthier, more active and inclusive urban areas in the Central Baltic region.

 

The economy of promoting cycling has been vital part of the project. Economic effects of increased cycling can be calculated with the HEAT Tool (Health Economic Assessment Tool), developed by the WHO. The tool takes into consideration the effects of physical activity, air pollution, accidents and, in the latest version, also those of carbon dioxide, on mortality. The denumerable financial benefits of cycling are derived from the annual effects on reduced mortality. This financial analysis can be used in cities to aid urban infrastructure planning and to provide arguments for future investments and strategies.

 

Turku University of Applied Sciences organized practical HEAT Tool training days for and support for making calculations with the tool for the project partner cities. The financial benefits of cycling were studied and calculated in all project target cities and areas, the Turku core region in Finland, City of Tartu in Estonia, City of Jūrmala, in Latvia and the Stockholm region in Sweden. The cities accumulated experience of using the tool, analyzing the effects and utilizing the results.

 

During the project, strong emphasis was also placed on how to get inhabitants to participate in city and transport planning particularly concerning walking and cycling, resulting in more inclusive and participatory processes with a focus on sustainable and healthy communities and a particular emphasis on cycling conditions. These experiences were summarized in a handbook for participatory urban planning. The handbook and other materials produced by the project can be accessed via: https://www.heatproject.eu/

3.bestpractises5logobanneri_heat_resized

 

Three years of BSR electric

20.11.2020

For the past three years, our experts in sustainable mobility have been working on a project focusing on e-mobility in urban environments. BSR electric – Fostering e-mobility solutions in urban areas in the Baltic Sea Region was international project which commenced in October 2017 and was finished this September.

Funded by the INTERREG Baltic Sea Region Programme 2014- 2020, the project aimed at enhancing the utilization of e-mobility in urban transport systems. The project consortium consisted of 15 partner organizations from eight countries and the seven different use cases of the project demonstrated the potential applications of various types of e-mobility, such as e-bikes, e-buses and e-scooters.

In our use case in TUAS, carried out in cooperation with a city-owned company Arkea Ltd, the suitability of LEVs (a regular e-bike and an e-cargo bike) for organization logistics was explored and their potential in replacing passenger car use on work-related trips was assessed. Based on the use case experiences and a comprehensive literature review, a report examining the feasibility of replacing (city)-organization fleets with EVs or LEVs was devised. In addition, a fleet track and route optimization tool was developed to assist city authorities or other relevant organizations in planning for the deployment of e-vehicles. These deliverables can be found here.

In general, the LEVs were received well and seen as having potential in replacing car use in certain contexts. At the same time, valuable lessons were learned. Firstly, usability of different LEVs is greatly dependent on the specific use context. Thus, careful mapping of user needs and market options is a necessity. Weather conditions in wintertime can be prohibiting factor for many potential users, which should be considered when timing the introduction of LEVs. The introduction of LEVs is best to be coupled with incentives or an information campaign to guarantee a successful introduction. Finally, practical issues such as storing requirements and safety related to LEVs are significant factors to their usability and can hinder initial eagerness towards the vehicles.

Key learnings from all seven use cases of the project have fed into checklists, an online learning module targeted at decision-makers as well as other urban transport stakeholders, and the roadmap document gathering the experiences from the project. All this material is found at the official project website.

cof

 

A New wind power training system to complement our facilities for students

05.11.2020

One of the most recent investments to our laboratory infrastructure, a wind power training system, has opened new opportunities for teaching and learning about wind energy production for the students of environmental-, energy- and chemical engineering students in TUAS.

Both teaching and learning about the design and operation of a modern wind power plant is challenging, as the plants themselves are basically inaccessible, which limits the opportunities for hands-on learning.

One of the latest additions to our laboratory facilities, a Lucas-Nülle wind energy training system has been bridging this gap since October. The system by a German manufacturer allows the emulation of the effect of wind force and the mechanical design of wind power stations in realistic detail using the servo machine testing stand and the WindSim software. With the system a double-feed asynchronous wind generator (DFIG) can be set up and commissioned. The generator can be operated with varying wind force levels and the output voltage and frequency can be regulated. 

The "mini power plant" allows our students to gain more hands-on experience of operating a wind power plant, which is a welcomed addition to learning by theory and simulations. Currently the system is in use on the Distributed Energy Systems -course, provided for the 3rd year students. The training system, as several other of our latest investments, has been made part as an investment programme supported by the European Regional Development Fund (ERDF). 

OLYMPUS DIGITAL CAMERA

 

RESPONSE - Integrated solutions for positive energy districts and sustainable cities 

27.10.2020

The recently launched RESPONSE project aims at creating a vision for the transition of the smart cities towards climate neutrality by 2050. The overall focus of the project is to create resilient and safe cities whilst improving the quality of life and lowering the impacts of climate change. The five-year project has received EU funding of 6,6 million euros.

At the core of the project are positive energy districts (PEDs). Positive energy districts and neighbourhoods refer to areas producing more net energy than what they are consuming. In the RESPONSE project, PEDs are being developed in the lighthouse cities of Turku and Dijon (France). The other cities, involved in the project as fellow cities are Brussels (Belgium), Zaragoza (Spain), Botosani (Romania), Ptolemaida (Greece), Gabrovo (Bulgaria) and Severodonetsk (Ukraine).

The project introduces ten integrated solutions, which in Turku are implemented in the Student Village (Ylioppilaskylä) area. The solutions include innovative technologies and tools, aiming at changing the existing and new building stock. As for the energy systems, the goal is to reduce the CO2 emissions of electricity-, heating- and cooling systems and improve the resilience, synergies and the storage capacity of the grids.

As part of the Turku project ecosytem TUAS and the New Energy research group bring expertise on renewable energy production, energy storages, DC microgrids and sustainable mobility to the project. The creation of PEDs is not only a matter of technology but also requires efforts from the citizens. Together with the Studen Village inhabitants TUAS is developing ways to engage the citizens.

The City of Turku leads the project ecosystem in Turku and other local partners in addition to TUAS include e.g. TYS, Turku Energia and Turku City Data. The whole project consortium is led by EIFER (European Institute for Energy Research) and the consortium consists of 53 partners. The project has officially commenced 1.10.2020 and it has received funding from the Horizon2020 research and innovation programme.

See the news of the project commencement also at the TUAS official website (in Finnih).

response_news_image

 

TIGON project launched!

22.9.2020

We’re happy to announce the start of a new project in which we are involved in as a partner. The project TIGON is set to demonstrate how direct current (DC) microgrids can help make the EU's electricity grids greener, more efficient, and more resilient as the world turns to renewable energy.

Most grid infrastructure is based on alternating current (AC) However, most popular renewable energy sources generate DC output, either directly or through a power converter. As they are intermittent, their power must be stored in batteries – again in DC. Furthermore, most modern electrical equipment such as laptops, mobile phones and LED lighting operate on DC. The question then arises: how do we draw on the legacy of the AC grid infrastructure when generation and consumption are increasingly DC?

TIGON aims to make a business case for advanced hybrid microgrids. The project will develop and demonstrate flexible solutions in two microgrids in France and Spain. The demonstrations will integrate solar power, energy storage systems, electric vehicle charging points and other DC loads using highly efficient grid technologies such as solid-state transformers, DC/DC converters and energy management systems.

The replication potential of the demonstrations will be tested in two use cases, the other one being the DC microgrid at Naantali Luonnonmaa residential district near Turku. Our role in the project is to lead the the analysis and provide results and conclusions on TIGON replication potential in Finnish infrastructure and legislation, and on the benefits of extending the DC network and improving its interaction with the main grid. Some of the solutions developed in TIGON are intended to be used in the DC microgrid currently being developed in one of our other project, SLEPS.

The international project consortium of TIGON is led by CIRCE (Fundación CIRCE Centro de Investigación de Recursos y Consumos Energéticos) from Spain. The four-year project is funded by European Union’s Horizon 2020 research and innovation programme. 

 

TigonTIGON_logobanner1

 

We made a move!

11.9.2020

With great joy, we are announcing the good news. We have moved!

A brand new EduCity campus building in Kupittaa has recently opened its doors. All our laboratory equipment has been moved to the modern and spacious premises of the new campus. The new address of our laboratory is Joukahaisenkatu 7, Turku or simply EduCity, and our facilities are found at the bottom floor. Our team has also retrieved a new office space in the adjacent ICT-City building, at room C 5093, found in the 5th floor, wing C.

The new EduCity building is equipped with many comfortable rooms and spaces. Students are treated with modern learning facilities and working spaces and there are also rooms for meetings. Cozy and stylish armchairs, big windows and open terraces provide opportunities for relaxation, and an indoor spiral slide some excitement! Sustainable development, including energy and material efficiency have guided the design. There are solar panels on the roof, good thermal insulation, and the sedum roofing of the terraces absorb and store carbon.

The new facilities are convenient to reach for both locals and visitors. Buildings are within a 200 m walking distance from the Kupittaa Railway Station and local bus lines 32 and 42 have a stop very near. If you are arriving by car, there are some paid parking spaces available. We couldn’t be more excited about the brand-new facilities and look forward to making them our home!

IMG_20200909_160514_1

Contact

DESLab_32

Samuli Ranta
Research Leader
+358 40 355 0833
samuli.ranta@turkuamk.fi